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Convex programs

e We saw: LP, QP, QCQP, SOCP, SDP

e Can be efficiently solved

e Optimal cost can be bounded above and below

e |ocal optimum is global
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Nonconvex programs

e |n general, cannot be efficiently solved

e Cost cannot be bounded easily

Usually we can only guarantee local optimality

Difficulty depends strongly on the instance
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Outline of the remainder of the course

e Integer (linear) programs

» it's an LP where some or all variables are discrete
(boolean, integer, or general discrete-valued)

» If all variables are integers, it's called IP or ILP
» If variables are mixed, it's called MIP or MILP

e Nonconvex nonlinear programs
» If continuous, it's called NLP
» If discrete, it's called MINLP

e Approximation and relaxation

» Can we solve solve a convex problem instead?

» If not, can we approximate?



Discrete variables

Why are discrete variables sometimes necessary?

1. A decision variable is fundamentally discrete

® Whether a particular power plant is used or not {0, 1}
e Number of automobiles produced {0,1,2,...}

e Dollar bill amount {$1, $5, $10, $20, $50, $100}



Discrete variables

Why are discrete variables sometimes necessary?

2. Used to represent a logic constraint algebraically.

e “At most two of the three machines can run at once.”

Z1+20+23<2 (zj is 1 if machine / is running)

® “If machine 1 is running, so is machine 2."

z1<

® Goal: (logic constraint) <= (LP with extra boolean variables)
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Return to Top Brass
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Mixed-integer programs

maximize c¢'x
X

subject to: Ax < b

x>0
x; € S;
where S; can be:
e The real numbers, R
e The integers, Z
e Boolean, {0,1}
e A discrete set, {vq,v,..., v}
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Mixed-integer programs

maximize c¢'x
X

subject to: Ax < b
x>0
X € 5,'

The solution can be

e Same as the LP version

e On a boundary

e In the interior (but not too far)
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Common examples

Facility location
» locating warehouses, services, etc.

Scheduling/sequencing
» scheduling airline crews

Multicommodity flows
» transporting many different goods across a network

Traveling salesman problems
» routing deliveries
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Knapsack problem

My knapsack holds at most 15 kg. | have the following items:

item number 1 2 3 4 5
weight 12kg | 2kg |4kg | L kg | 1 kg
value $4 $2 | %10 | $2 | %1

How can | maximize the value of the items in my knapsack?

Let 1 knapsack contains item /
et z; =
' 0 otherwise
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Knapsack problem

My knapsack holds at most 15 kg. | have the following items:

item number 1 2 3 4 5
weight 12kg | 2kg |4kg | L kg | 1 kg
value $4 $2 | %10 | $2 | %1

How can | maximize the value of the items in my knapsack?

maximize 4z + 2z, + 10z3 + 224 + zs

subject to: 1221 aF 222 aF 423 + z4 + z5 S 15
z; € {0,1} forall i

notebook: Knapsack.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Knapsack.ipynb

General (0,1) knapsack

e weights wy, ..., w, and limit W.
e values vq,...,v,
e decision variables z;, ..., z,
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