17. Intro to nonconvex models

- Overview
- Discrete models
- Mixed-integer programming
- Examples

Convex programs

- We saw: LP, QP, QCQP, SOCP, SDP
- Can be efficiently solved
- Optimal cost can be bounded above and below
- Local optimum is global

Nonconvex programs

- In general, cannot be efficiently solved
- Cost cannot be bounded easily
- Usually we can only guarantee local optimality
- Difficulty depends strongly on the instance

Outline of the remainder of the course

- Integer (linear) programs
 - it's an LP where some or all variables are discrete (boolean, integer, or general discrete-valued)
 - ▶ If all variables are integers, it's called IP or ILP
 - ▶ If variables are mixed, it's called MIP or MILP
- Nonconvex nonlinear programs
 - If continuous, it's called NLP
 - ▶ If discrete, it's called MINLP
- Approximation and relaxation
 - Can we solve solve a convex problem instead?
 - If not, can we approximate?

Discrete variables

Why are discrete variables sometimes necessary?

- 1. A decision variable is fundamentally discrete
- ullet Whether a particular power plant is used or not $\{0,1\}$
- Number of automobiles produced $\{0,1,2,...\}$
- Dollar bill amount {\$1,\$5,\$10,\$20,\$50,\$100}

Discrete variables

Why are discrete variables sometimes necessary?

- 2. Used to represent a logic constraint algebraically.
 - "At most two of the three machines can run at once."

$$z_1 + z_2 + z_3 \le 2$$
 (z_i is 1 if machine i is running)

• "If machine 1 is running, so is machine 2."

$$z_1 \leq z_2$$

Goal: (logic constraint) ← (LP with extra boolean variables)

$$\max_{f,s} \quad \frac{12f + 9s}{s.t.} \quad 4f + 2s \le 4800$$

$$f + s \le 1750$$

$$0 \le f \le 1000$$

$$0 \le s \le 1500$$

max
$$f, s$$
 s.t. $4f + 2s \le 4800$ $f + s \le 1750$ $0 \le f \le 1000$ $0 \le s \le 1500$ f and f are multiples of 50

Same solution!

max
$$f, s$$
 12 $f + 9s$ s.t. $4f + 2s \le 4800$ $f + s \le 1750$ $0 \le f \le 1000$ $0 \le s \le 1500$ f and f are multiples of 200

Boundary solution!

max
$$f_{f,s}$$
 12 $f + 9s$
s.t. $4f + 2s \le 4800$
 $f + s \le 1750$
 $0 \le f \le 1000$
 $0 \le s \le 1500$
 f and s are multiples of 225

Interior solution!

Mixed-integer programs

```
maximize c^{\mathsf{T}}x
subject to: Ax \leq b
x \geq 0
x_i \in S_i
```

where S_i can be:

- ullet The real numbers, ${\mathbb R}$
- ullet The integers, ${\mathbb Z}$
- Boolean, $\{0,1\}$
- A discrete set, $\{v_1, v_2, \ldots, v_k\}$

Mixed-integer programs

maximize
$$c^{\mathsf{T}}x$$
subject to: $Ax \leq b$
 $x \geq 0$
 $x_i \in S_i$

The solution can be

- Same as the LP version
- On a boundary
- In the interior (but not too far)

Common examples

- Facility location
 - locating warehouses, services, etc.
- Scheduling/sequencing
 - scheduling airline crews
- Multicommodity flows
 - transporting many different goods across a network
- Traveling salesman problems
 - routing deliveries

Knapsack problem

My knapsack holds at most 15 kg. I have the following items:

item number	1	2	3	4	5
weight	12 kg	2 kg	4 kg	1 kg	1 kg
value	\$4	\$2	\$10	\$2	\$1

How can I maximize the value of the items in my knapsack?

$$\text{Let } z_i = \begin{cases} 1 & \text{knapsack contains item } i \\ 0 & \text{otherwise} \end{cases}$$

Knapsack problem

My knapsack holds at most 15 kg. I have the following items:

item number	1	2	3	4	5
weight	12 kg	2 kg	4 kg	1 kg	1 kg
value	\$4	\$2	\$10	\$2	\$1

How can I maximize the value of the items in my knapsack?

maximize
$$4z_1 + 2z_2 + 10z_3 + 2z_4 + z_5$$

subject to: $12z_1 + 2z_2 + 4z_3 + z_4 + z_5 \le 15$
 $z_i \in \{0,1\}$ for all i

notebook: Knapsack.ipynb

General (0,1) knapsack

- weights w_1, \ldots, w_n and limit W.
- values v_1, \ldots, v_n
- decision variables z_1, \ldots, z_n

maximize
$$\sum_{i=1}^n v_i z_i$$
 subject to: $\sum_{i=1}^n w_i z_i \leq W$ $z_i \in \{0,1\}$ for $i=1,\ldots,n$