17. Intro to nonconvex models

- Overview
- Discrete models
- Mixed-integer programming
- Examples

Convex programs

- We saw: LP, QP, QCQP, SOCP, SDP
- Can be efficiently solved
- Optimal cost can be bounded above and below
- Local optimum is global

Nonconvex programs

- In general, cannot be efficiently solved
- Cost cannot be bounded easily
- Usually we can only guarantee local optimality
- Difficulty depends strongly on the instance

Outline of the remainder of the course

- Integer (linear) programs
- it's an LP where some or all variables are discrete (boolean, integer, or general discrete-valued)
- If all variables are integers, it's called IP or ILP
- If variables are mixed, it's called MIP or MILP
- Nonconvex nonlinear programs
- If continuous, it's called NLP
- If discrete, it's called MINLP
- Approximation and relaxation
- Can we solve solve a convex problem instead?
- If not, can we approximate?

Discrete variables

Why are discrete variables sometimes necessary?

1. A decision variable is fundamentally discrete

- Whether a particular power plant is used or not $\{0,1\}$
- Number of automobiles produced $\{0,1,2, \ldots\}$
- Dollar bill amount $\{\$ 1, \$ 5, \$ 10, \$ 20, \$ 50, \$ 100\}$

Discrete variables

Why are discrete variables sometimes necessary?

2. Used to represent a logic constraint algebraically.

- "At most two of the three machines can run at once."

$$
z_{1}+z_{2}+z_{3} \leq 2 \quad\left(z_{i} \text { is } 1 \text { if machine } i \text { is running }\right)
$$

- "If machine 1 is running, so is machine 2."

$$
z_{1} \leq z_{2}
$$

- Goal: (logic constraint) \Longleftrightarrow (LP with extra boolean variables)

Return to Top Brass

$$
\begin{array}{ll}
\max _{f, s} & 12 f+9 s \\
\text { s.t. } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& 0 \leq f \leq 1000 \\
& 0 \leq s \leq 1500
\end{array}
$$

Return to Top Brass

$$
\begin{array}{ll}
\max _{f, s} & 12 f+9 s \\
\text { s.t. } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& 0 \leq f \leq 1000 \\
& 0 \leq s \leq 1500 \\
& f \text { and } s \text { are } \\
& \text { multiples of } 50 \\
& \\
\text { Same solution! }
\end{array}
$$

Return to Top Brass

$$
\begin{array}{ll}
\max _{f, s} & 12 f+9 s \\
\text { s.t. } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& 0 \leq f \leq 1000 \\
& 0 \leq s \leq 1500 \\
& f \text { and } s \text { are } \\
& \text { multiples of } 200
\end{array}
$$

Boundary solution!

Return to Top Brass

$$
\begin{array}{ll}
\max _{f, s} & 12 f+9 s \\
\text { s.t. } & 4 f+2 s \leq 4800 \\
& f+s \leq 1750 \\
& 0 \leq f \leq 1000 \\
& 0 \leq s \leq 1500 \\
& f \text { and } s \text { are } \\
& \text { multiples of } 225
\end{array}
$$

Interior solution!

Mixed-integer programs

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & c^{\top} x \\
\text { subject to: } & A x \leq b \\
& x \geq 0 \\
& x_{i} \in S_{i}
\end{aligned}
$$

where S_{i} can be:

- The real numbers, \mathbb{R}
- The integers, \mathbb{Z}
- Boolean, $\{0,1\}$
- A discrete set, $\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}$

Mixed-integer programs

$$
\begin{aligned}
\underset{x}{\operatorname{maximize}} & c^{\top} x \\
\text { subject to: } & A x \leq b \\
& x \geq 0 \\
& x_{i} \in S_{i}
\end{aligned}
$$

The solution can be

- Same as the LP version
- On a boundary
- In the interior (but not too far)

Common examples

- Facility location
- locating warehouses, services, etc.
- Scheduling/sequencing
- scheduling airline crews
- Multicommodity flows
- transporting many different goods across a network
- Traveling salesman problems
- routing deliveries

Knapsack problem

My knapsack holds at most 15 kg . I have the following items:

item number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
weight	12 kg	2 kg	4 kg	1 kg	1 kg
value	$\$ 4$	$\$ 2$	$\$ 10$	$\$ 2$	$\$ 1$

How can I maximize the value of the items in my knapsack?

$$
\text { Let } z_{i}= \begin{cases}1 & \text { knapsack contains item } i \\ 0 & \text { otherwise }\end{cases}
$$

Knapsack problem

My knapsack holds at most 15 kg . I have the following items:

item number	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
weight	12 kg	2 kg	4 kg	1 kg	1 kg
value	$\$ 4$	$\$ 2$	$\$ 10$	$\$ 2$	$\$ 1$

How can I maximize the value of the items in my knapsack?

$$
\begin{aligned}
\underset{z}{\operatorname{maximize}} & 4 z_{1}+2 z_{2}+10 z_{3}+2 z_{4}+z_{5} \\
\text { subject to: } & 12 z_{1}+2 z_{2}+4 z_{3}+z_{4}+z_{5} \leq 15 \\
& z_{i} \in\{0,1\} \text { for all } i
\end{aligned}
$$

notebook: Knapsack.ipynb

General $(0,1)$ knapsack

- weights w_{1}, \ldots, w_{n} and limit W.
- values v_{1}, \ldots, v_{n}
- decision variables z_{1}, \ldots, z_{n}

$$
\begin{aligned}
\underset{z}{\operatorname{maximize}} & \sum_{i=1}^{n} v_{i} z_{i} \\
\text { subject to: } & \sum_{i=1}^{n} w_{i} z_{i} \leq W \\
& z_{i} \in\{0,1\} \quad \text { for } i=1, \ldots, n
\end{aligned}
$$

